
� Page � of �1 63

Building Smarter
Communications Using
Artificial Intelligence

October 15, 2019

Table of Contents

 
 
 
 
 
 
 
 
 
 
 

 
 

Learn more about RingCentral and earn great  
prizes and rewards in the process!  

https://gamechanging.dev  

Build Your RingCentral Virtual Voicemail Assistant for Business (Part 1) 3

Build Your RingCentral Virtual Voicemail Assistant for Business (Part 2) 15

Building Machine Learning Models with MonkeyLearn 30

Voice Communications Analytics 39

� Page � of �2 63

Build Your RingCentral Virtual Voicemail
Assistant for Business — Part 1 

 
Paco Vu 

Nowadays, consumers have a variety of options for obtaining services and getting the
help they need. They can use web chat, email, the Internet and face-to-face contact, yet
telephone customer service is still the first choice for most customers when they have
questions or a problem that needs to be resolved.

In order to ensure your customers are happy with the customer service they receive, it’s
even more important for you to provide exceptional customer service, including
outstanding telephone service. Consumers expect better service than ever before, and
the capabilities of modern telephone communications allow you to offer them the
satisfaction and resolution they demand.

IVR (Interactive Voice Response) can be a great tool for your company in decreasing
customer wait time and increasing customer satisfaction, but customers are sometimes
not overly fond of automatic response systems–especially when they have bad
experiences. They don’t want to go through a lengthy menu and after listening to a
machine’s voice and pressing keys, they still end up in a call queue–impatiently waiting
for their turn to talk to a person; If they get dropped out of the queue for any reason,
they have to repeat the lengthy process again and would end up at the tail of the queue.

� Page � of �3 63

Voicemail saves your customers time. If they cannot afford to wait on hold indefinitely or
continue to try to call you throughout the day, voicemail gives them the opportunity to
leave a message and let you return their call. Voicemail ensures accuracy because it is
an exact recording of what the caller actually said. Using voicemail and taking
messages properly are crucial to making sure your customers are happy. If they cannot
talk to the appropriate person when they call, they are already less than satisfied; if their
message is not relayed properly to the right individual, you will disappoint them even
more. Listening to a voicemail before calling back your customer would also give you a
chance to prepare for the conversation.

This article discusses the voicemail capabilities of the RingCentral cloud
communications system, and AI (Artificial Intelligence) solutions that can be employed
to build an effective virtual voicemail assistant for your telephone customer services.

Setup a voicemail inbox
Under a RingCentral account, each extension (user) and department has its own free
voicemail inbox with multiple options for managing voice messages. For the purpose of
building a virtual voicemail assistant, you might want to create a new user named
Voicemail Assistant, assign a direct phone number and set it up for a dedicated
telephone customer service.

The voicemail greeting message is an important element of your business’s voicemail
system because it is often the first impression of your service that customers will have.

� Page � of �4 63

The default voicemail greeting message is adequate. But you should create a really
good greeting message to impress customers by putting your best face on, while
increasing the chances that you’ll retain their business. With RingCentral, you have
several options to customize your voicemail greeting message: 

• Let the system call your phone number and you will have a chance to record a
greeting message.

• Use the computer’s microphone to record a greeting message.
• Upload a prerecorded audio file.

 

When your customers dial a number, they normally will hear several messages before
reaching the voicemail inbox. This is because of the default system settings, which

� Page � of �5 63

enables the user greeting message, plays the ringtone while the phone is ringing, then
plays the voicemail greeting message when the call is redirected to a voice mailbox. 

Your virtual voicemail assistant is dedicated to a voicemail customer service, meaning
that any incoming call to the service phone number should be redirected immediately to
the voicemail inbox. So, you may want to cut down all the unnecessary steps including
the ringing stage. To do so, you can open the “Screening, Greeting & Hold Music”
section and disable the “User Greeting” and the “Connecting Message”. Then browse to
the “Call Handling & Forwarding” section and turn off all the forwarding sequences so a
call will be redirected immediately to the voice mailbox.

Last but not least, you can set the “User Hours” option to 24 hours and 7 days a week to
make your virtual voicemail assistant work around the clock.

That’s pretty much all you need to setup for the voicemail inbox using the RingCentral
service dashboard. The next question is how do you access the voicemail
programmatically to build your virtual voicemail assistant? The RingCentral Developer
platform allows you to access to a growing number of APIs and integrate rich
communication features into your application.

Get new voicemail notification
RingCentral platform supports real-time push notifications. It is an event triggered
mechanism to get notified when something happens to the service you are observing.
You can choose between PubNub or Webhooks delivery mechanism to get notifications.
To get notified when there is a new voicemail arriving in a voicemail inbox, you can
subscribe for the voicemail event for that particular user (inbox). What data comes
together in a voicemail notification message? Below is a typical payload of a voicemail
event: 

{
 "uuid":"473993724243953516",
 "event":"/restapi/v1.0/account/~/extension/~/voicemail",
 "timestamp":"2019-06-16T21:27:06.525Z",

� Page � of �6 63

https://service.ringcentral.com/
https://service.ringcentral.com/
http://developer.ringcentral.com/
http://developer.ringcentral.com/
https://developers.ringcentral.com/guide/notifications/manual/pubnub
https://developers.ringcentral.com/guide/notifications/manual/webhooks

 "subscriptionId":"c204cdb4-d8b0-4b3e-808a-xxxx",
 "ownerId":"17800xxxx",
 "body":{
 uri:
'https://api.ringcentral.com/restapi/v1.0/account/~/extension/~/
message-store/1054xxxx',
 id: 1054xxxx,
 to: [{
 phoneNumber: '+1650513xxxx',
 name: '(650) 513-xxxx',
 location: 'San Mateo, CA'
 }],
 from: {
 phoneNumber: '+1650224xxxx',
 name: 'Henry Taylor',
 location: 'Mountain View, CA'
 },
 type: 'VoiceMail',
 creationTime: '2019-06-16T22:17:27.000Z',
 readStatus: 'Unread',
 priority: 'Normal',
 attachments: [{
 id: 1054xxxx,
 uri:
'https://media.ringcentral.com/restapi/v1.0/account/~/extension/
~/message-store/1054xxxx/content/1054xxxx',
 type: 'AudioRecording',
 contentType: 'audio/mpeg',
 vmDuration: 11
 },{
 id: 2406yyyy,
 uri: 'https://media.ringcentral.com/restapi/v1.0/account/
~/extension/~/message-store/1054xxxx/content/2406yyyy',
 type: 'AudioTranscription',
 contentType: 'text/plain',
 vmDuration: 11,

� Page � of �7 63

 fileName: 'transcription'
 }],
 direction: 'Inbound',
 availability: 'Alive',
 messageStatus: 'Received',
 lastModifiedTime: '2019-06-16T22:17:41.584Z',
 vmTranscriptionStatus: 'Completed'
}

There is some key information you will be interested in — the “from” phone number and
the voicemail attachments.

Who just left a voicemail message?
Obviously, the “from” phone number is the caller’s phone number. This is the key
information for you to identify the caller’s identity. You can search for the phone number
from your customer database to check if the caller is your customer or not. If the caller
is a known customer, you can pull necessary information on that customer from your
database to get ready for the conversation with the customer when you make a call
back. What if the caller’s identity is unrecognized? It can be an existing customer who
uses a different phone number; it can be a potential customer; or it can be some
spammer or scammer whom you really want to flag and ignore.

Scam call detection
Like email, voicemail is also another popular channel for scammers and spammers to
exploit. Sometimes you can recognize a scam phone number if you’ve seen it several
times earlier. But most of the time you’ll find out if a voicemail is spammy or not only
after you start listening to it.  

That makes spam voicemails extremely disturbing when you are overwhelmed with real
customers’ voicemails. So, you don’t want to see spam voicemails in your voicemail list,
or do you? 

Your virtual voicemail assistant should be able to identify and flag such non-business
voicemails for you. The fastest way to identify a spammy voicemail is to look up the
caller’s phone number from a blacklist if you have one. If you don’t have a blacklist or
cannot detect from your own blacklist, you can use online services such as the phone
reputation detection from WhitePages, to enquire for a detailed report of a phone

� Page � of �8 63

https://www.whitepages.com/

number. 

The response from WhitePages’s Phone Reputation service contains detailed
reputation information of a phone number. You might be interested in a couple of key
attributes–the reputation level and the category, that help you make quick decision if a
voicemail is a spam or not.

The reputation level is a score number ranging from 1 to 4; with 1 indicates high
confidence that the phone number has not been associated with spam/risky behavior;
and 4 indicates high confidence that this is a spammy/risky number. You can use the
reputation score to classify a caller’s number as follow:

1: Clean; 2: Likely 3: Highly 4: Risky  

The category label specifies the type of spam or scam associated with the phone
number. Here is a list of categories the Phone Reputation API could identify:
Not Spam — Debt Collector — Telemarketer — Political Call — Phone Survey —
Phishing — Extortion — IRS Scam — Tax Scam — Tech Support Scam — Vacation
Scam — Lucky Winner Scam — Scam — NonProfit — Robocaller — TollFree Pumping
— Other Spam 

You can use the categories above to indicate the source of a voicemail. Optionally, for
those voicemails came from your customers, you can specify a value of 1 to the
reputation score and a label “Customer” for the category. 

� Page � of �9 63

http://procampaigns.whitepages.com/rs/756-OJA-475/images/phone-reputation-data-sheet-09-2016.pdf
http://procampaigns.whitepages.com/rs/756-OJA-475/images/phone-reputation-data-sheet-09-2016.pdf

You can also detect a spammy voicemail by analyzing the voicemail content using AI
technology. But let’s explore that feature later when we discuss about AI solutions.

Access the voicemail audio
The voicemail audio content can be accessed via the attachment URI from the
notification body. 

{
 id: 1054xxxx,
 uri: 'https://media.ringcentral.com/restapi/v1.0/account/~/
extension/~/message-store/1054xxxx/content/1054xxxx',
 type: 'AudioRecording',
 contentType: 'audio/mpeg',
 vmDuration: 11
}

Now that you’d get notified when there is a new voicemail; you’d know the caller’s
identity so you could avoid spending time on those spam voicemails; and you’d be able
to listen to the voicemail audio. But your virtual voicemail assistant should do more to
help you organize and prioritize your voicemail list. The challenge is how to make it
recognize human speeches and understand the message for making decisions like a real
assistant. 

You are thinking about AI and machine learning right now, right? You have to develop
NLP (Natural Language Processing) algorithms and statistical models to build the brain
of your virtual assistant. It is a sophisticated project that normally it would take years to
turn from technical concepts into an actual model in production.

Today, fortunately, you don’t always need to develop your own machine learning
algorithms for your AI solutions. Many companies provide AI services such as speech
recognition, language detection, sentiment analysis, concept extraction etc. Most of the
services are accessible on-demand via their cloud API platform. Your focus will be
shifted from developing such complicated technology to creating great user experience
and choosing the best AI solution available on the market for your application.

Now, let’s move on to explore the AI services you would need for this project.

� Page � of �10 63

Voicemail transcription
Most of the RingCentral service plans include the Voicemail-to-Text feature. This means
that all voicemails will be automatically transcribed. You can set the Voicemail to Text
option from the RingCentral service dashboard mentioned earlier at the “Messages”
section. 

 
If the Voicemail to Text option is set, you can access the voicemail transcript via the
attachment URI from the notification body. 

{
 id: 2406yyyy,
 uri: 'https://media.ringcentral.com/restapi/v1.0/account/~/
extension/~/message-store/1054xxxx/content/2406yyyy',
 type: 'AudioTranscription',
 contentType: 'text/plain',
 vmDuration: 11,
 fileName: 'transcription'
}
 
For testing on the sandbox environment, or for other reasons if you cannot use the
transcription service from RingCentral (e.g. support other languages than English), you
can use any Speech-to-Text service provided by many AI companies such as Google,
AWS, IBM, Rev.ai, VoiceBase, AI Sense etc. to transcribe a voicemail. 

The more accurate the voicemail transcript is, the better your virtual assistant would be
able to process the customer’s message. Getting the voicemail transcript is just the first

� Page � of �11 63

step of preparation for the data analysis. 
 

Define objectives
In customer services, sometimes the FIFS (First In First Serve) model is not preferable
as you might want to give higher priority to a customer who needs urgent help. Assign a
customer’s case automatically to an agent based on competency and skills would also
improve response time for your customer service, thus, increase your customer
satisfaction. 

So, your virtual voicemail assistant must be able to identify a voicemail urgency and to
categorize the voicemail message then assign it to the right agent.

Train your dataset
Unfortunately, some generic AI services are not the perfect solutions for certain types of
problems you are trying to solve. You can use general sentiment analysis to detect the
common sense of customers satisfaction — how much they like or dislike something,
but not necessarily about your product. You can also use the generic categorization
from Google AI service to categorize your customer’s problems. However, you will find it
very hard to map their predefined categories into your own product or service
categories.

Luckily, some leading AI companies let you customize the service to meet your
expectation. In other words, they let you use their machine learning algorithms to train
your own dataset.

To obtain a great data model that fits your customer service context, you must collect as
many real sample messages as possible for your dataset, then train it with appropriate
machine learning algorithms. Think of the dataset as a maths book with lots of addition
and subtraction exercises. The more exercises you practice, the more knowledge about
addition and subtraction you’ll gain.

Different companies provide different methods to train custom dataset. Some allow you
to choose algorithms, some automatically select the most suitable algorithms based on
the type of model you selected. MonkeyLearn is one of the leading AI companies that
provides easy ways to train custom dataset for different service models. They also
provide lots of demo models for quick evaluations.

� Page � of �12 63

https://monkeylearn.com/

Auto reply with SMS message
To enhance the customers experience, you can instantly send a reply SMS message to
notify the callers that you have received their message and will call them back as soon
as you can. Of course, you are not going to reply to spammers nor try to send an SMS
message if the caller’s phone number is not a mobile phone number.

There are different ways to detect if the caller’s number is a mobile number. If the phone
number is found from your customer database, you can check the contact number type
if that exists. Otherwise, you can use WhitePages Phone Intelligence API to detect if a
number is a mobile phone number.

To send a reply SMS message, all you need is to compose a relevant message and
send it using RingCentral SMS API.

� Page � of �13 63

https://ekata.com/developer/documentation/api-overview/#tag/Phone-Intelligence-API
https://developers.ringcentral.com/api-reference/SMS/createSMSMessage

Try the virtual voicemail assistant demo
Click here to start the app and login with your own RingCentral user credentials. Open
the Help page for detailed instructions.

� Page � of �14 63

https://voicemail-assistant.herokuapp.com/

Build Your RingCentral Virtual Voicemail
Assistant for Business — Part 2 

 
Paco Vu 

 
In part 1, I explained the voicemail capabilities of the RingCentral cloud communications
system, and AI (Artificial Intelligence) solutions that can be employed to build an
effective virtual voicemail assistant for your telephone customer services. I also showed
you how to create and setup a dedicated extension for taking only voicemail messages,
and the overall workflow of a virtual voicemail assistant. 

In this article, I will walk through the essential steps to develop a Web app — a demo of
virtual voicemail assistant for RingCentral Developers support, which can listen for new
voicemail messages and perform the following tasks.

� Page � of �15 63

https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-1-e867c391487f

  

• Receive voicemail messages
• Detect spammy voicemails
• Auto reply to a caller with an SMS message
• Transcribe voicemail messages
• Detect urgency of a voicemail
• Categorize voicemail content
• Assign a support ticket (voicemail) to a designated support engineer (agent)
• Let an agent read the voicemail transcript or listen to the original voicemail

message
• Allow agents to easily call back by click-to-dial or send an SMS to the caller

 
The associated demo application is built using Node JS, Express Web application
framework. Thus, for conveniences, I will use the Node JS SDKs provided
by RingCentral, Monkey Learn, and Rev AI to access their services. You can easily build
this Web app backend in any programming language you like with the client libraries
provided by the services providers mentioned above. 

In order to build and run the demo app, you will need to setup the following accounts,
get their API keys and login credentials: 

• A RingCentral developer account. Click here to create a free developer account.
• A MonkeyLearn developer account. Click here to create.
• A Rev.ai developer account. Click here to create.
• A WhitePages Pro (a.k.a Ekata) developer account. Click here to create.

 
Note: The code snippets shown in this article are shorter and just for illustration. They
may not work directly with copy/paste. I recommend you download the entire
project from here.

� Page � of �16 63

https://github.com/ringcentral/ringcentral-js
https://monkeylearn.com/api/v3/#javascript
https://github.com/PacoVu/rev_ai
https://developers.ringcentral.com/free-tier-sign-up.html
https://app.monkeylearn.com/accounts/register/
https://www.rev.ai/auth/signup
https://ekata.com/developer/lp/start-api-trial/#tag/Find-Person-API/paths/~13.0~1person/get
https://github.com/PacoVu/voicemail_assistant

 
Get new voicemail notification
Let’s get started with the critical function of a voicemail assistant — Listening for new
voicemails arriving in the voice mailbox. This feature can be implemented using
either PubNub notification or Webhooks notification. 

I will use the RingCentral webhooks notification method to subscribe for new voicemail
event notification. 

var eventFilters = ['/restapi/v1.0/account/~/extension/~/
voicemail']
platform.post('/subscription',
 {
 eventFilters: eventFilters,
 deliveryMode: {
 transportType: 'WebHook',
 address: 'https://[c1969441.ngrok.io]/webhookcallback'
 }
 })
 .then(function(response) {
 console.log("Ready to receive voicemail notification.")

})  

See the webhooks.js module for complete code. I will skip the explanation on how
RingCentral webhooks work, but if you are not familiar with RingCentral webhook
notifications, please read this blog to learn more. 

Since I expect to run the app on my local machine, I use the ngrok tool to get the
callback address [https://c1969441.ngrok.io]. If the event notification subscription was
subscribed successfully, I will receive notifications in a post request to the address
specified above. 

When I receive a notification, I parse the data to get the body JSON object,
the ownerId (which is the extension Id of a user who subscribed for the notification) and
the subscriptionId. Then I call the processVoicemailNotification() function to process
the data. I use the extensionId to find the user who should process the voicemail
notification and I use the subscriptionId to verify if it is the event I subscribed for. 
 

app.post('/webhookcallback', function(req, res) {
 if(req.headers.hasOwnProperty("validation-token")) {

� Page � of �17 63

https://developers.ringcentral.com/guide/notifications/manual/pubnub
https://developers.ringcentral.com/guide/notifications/manual/webhooks
https://medium.com/p/8dd3550f4525

 res.setHeader('Validation-Token', req.headers['validation-
token']);
 res.statusCode = 200;
 res.end();
 }else{
 var data = []
 req.on('data', function(chunk) {
 data.push(chunk);
 })
 .on('end', function() {
 data = Buffer.concat(data).toString();
 var jsonObj = JSON.parse(data)
 var body = jsonObj.body
 var extensionId = jsonObj.ownerId
 var subscriptionId = jsonObj.subscriptionId

processVoicemailNotification(body,extensionId,subscriptionId)
 });
 }
})
function processVoicemailNotification(body, extId,
subscriptionId){
 var index = getUserIndexByExtensionId(extId)
 if (index < 0)
 return
 if (users[index].getSubscriptionId() == subscriptionId)
 users[index].processVoicemailNotification(body)
 else
 console.log("not my subscription")
}  
 
 

Let’s move on to parse the body of a voicemail notification to extract some essential
data: 

� Page � of �18 63

{
 "body": {
 id: 1054xxxx,
 from: {
 phoneNumber: '+1650224xxxx',
 location: 'Mountain View, CA'
 },
 type: 'VoiceMail',
 readStatus: 'Unread',
 attachments: [
 {
 id: 1054xxxx,
 uri:
'https://media.ringcentral.com/restapi/v1.0/account/~/extension/
~/message-store/1054xxxx/content/1054xxxx',
 type: 'AudioRecording',
 contentType: 'audio/mpeg',
 vmDuration: 11
 },{
 id: 2406yyyy,
 uri: 'https://media.ringcentral.com/restapi/v1.0/
account/~/extension/~/message-store/1054xxxx/content/2406yyyy',
 type: 'AudioTranscription',
 contentType: 'text/plain',
 vmDuration: 11,
 fileName: 'transcription'
 }],
 lastModifiedTime: '2019-06-16T22:17:41.584Z',
 vmTranscriptionStatus: 'Completed'
 }
}

 
I extract the data and keep them in the item object as shown below: 

var item = {}
if (body.from.hasOwnProperty("phoneNumber")){
 item['fromNumber'] = body.from.phoneNumber
 if (body.from.hasOwnProperty('name'))
 item['fromName'] = body.from.name
 else

� Page � of �19 63

 item['fromName'] = "Unknown"
}else{
 // Just for demo purpose. Use predefined scam numbers
 if (index >= samplePhoneNumber.length)
 index = 0
 item['fromNumber'] = samplePhoneNumber[index]
 item['fromName'] = "Unknown"
 index++
}
item['toNumber'] = body.to[0].phoneNumber
item['toName'] = body.to[0].name
var timestamp = new Date(body.lastModifiedTime).getTime()
item['date'] = timestamp
item['id'] = body.id

 
I need to detect if the caller’s phone number exists. This is necessary because the
“from.phoneNumber” could be missing if a call is anonymous. In this demo, I predefined
a list of scam phone numbers and use it for simulating scam calls if a call is anonymous.
In a real application, we still can proceed the voicemail analysis for anonymous calls
and try to detect if a caller leaves a call back number in the voicemail message. 

Identify a caller
Using the caller’s phone number, I make a query to my customer database to find a
customer and retrieve the customer’s information such as the first and last name, and
the type of phone number (i.e. mobile). In a real application, you can connect to your
CRM database and pull any necessary customer information that an agent should be
aware of when he or she makes a callback to the customer. 

var query = "SELECT first_name, last_name, phone_number_type

FROM customers WHERE phone_number='" + phoneNumber + "'" 

For the demo purpose, I created a small customer database with just basic customer
information below: 

customer_id — first_name — last_name — phone_number — phone_number_type
If the caller is a registered customer, I move on to analyze the voicemail message.
Otherwise, I will proceed to detect if it is a spammer or not.

� Page � of �20 63

Scam voicemail detection
As I mentioned earlier, I use WhitePages service to detect a phone number reputation. 

var url = "https://proapi.whitepages.com/3.0/phone_reputation?"
url += "api_key=[WHITEPAGES_PHONE_REPUTATION_APIKEY]";
url += "&phone=[phoneNumber]"
request.get(url, function(err, res, body){
 if(res.statusCode == 200){
 // parse the body to get phone reputation info
 var jsonObj = JSON.parse(body)
 var numberInfo = {}
 if (jsonObj.hasOwnProperty("reputation_level"))
 numberInfo['reputation_level'] = jsonObj.reputation_level
 ...
 if (jsonObj.hasOwnProperty("reputation_details"))
 numberInfo['reputation_details'] =
jsonObj.reputation_details
 ...
 }

}); 

See the number_analysis.js module for complete code. 

At this point, I should have enough information to identify if a caller is a spammer or not,
based on the reputation level. I also classify a voicemail source using the “category” tag
from the “reputation_details” returned from WhitePages. And for a registered customer’s
voicemail, I use the “Customer” tag. 

If the reputation level value is greater than 1, I flag the voicemail as spam with a label
(Likely, Highly or Risky) based on the reputation level, and I will stop analyzing the
voicemail. 

If the reputation level value is 1, I will label the voicemail as “Clean”, and move on to get
the voicemail transcript. 

 

� Page � of �21 63

Get voicemail transcript
If the voicemail was automatically transcribed by RingCentral, I can access the
voicemail transcript via the attachment URI from the notification event body. However, I
need to check whether the voicemail transcription status is completed and if the
attachment type is “AudioTranscription” before getting the transcript. 

if (body.vmTranscriptionStatus == "Completed"){
 for (var attachment of body.attachments){
 if (attachment.type == "AudioTranscription"){
 platform.get(attachment.uri)
 .then(function(res) {
 return res.response().buffer();
 })
 .then(function(buffer) {
 var transcript = buffer.toString()
 item['transcript'] = transcript
 })
 break
 }
 }

}  

For testing on the sandbox environment, I use the Rev.ai speech recognition service to
transcribe the voicemail. I use my own SDK to call the Rev AI transcription service.
However, you can use Rev AI’s official SDKs to access their service. Either way, we
must attach a valid access token to the voicemail attachment URL to make it publicly
accessible (as long as the access token is valid). 

for (var attachment of body.attachments){
 if (attachment.type == "AudioRecording"){
 var vmUri = platform.createUrl(attachment.uri, {addToken:
true})
 // Call Rev.ai transcription service API
 transcriptionist.transcribe(vmUrl, function(err, transcript)
{
 if (err){
 console.log(err)

� Page � of �22 63

https://www.rev.ai/
https://github.com/PacoVu/rev_ai
https://www.rev.ai/docs

 }else{
 item['transcript'] = transcript
 ...
 }
 break
 }

}  

See the transcription_engine.js module for complete code. 

Getting ready for voicemail analysis
I decided to use MonkeyLearn AI services for urgency detection and categorization. It is
very easy to train your own dataset with MonkeyLearn’s data model creation tools.

� Page � of �23 63

For urgency detection, I used their demo data model for the demo purpose, as it can
detect the urgency based on keywords like “as soon as possible”, “as soon as you can”
“this is urgent” etc. 

For categorization, I trained my own dataset to build a data model for detecting the
following predefined categories: 

Messaging — Voice — Meeting — Data — Authentication — Configuration —
Notification — Integration 

First, I collected a couple hundred technical questions from the RingCentral Developers
Forum and put them in an Excel sheet and tagged them appropriately, then saved them
in a .CSV file. It’s worth noting that, the more data samples you provide, the better your
results will be for categorization. 

Then I uploaded the file to MonkeyLearn to start the training process. 

� Page � of �24 63

https://forums.developers.ringcentral.com/index.html
https://forums.developers.ringcentral.com/index.html

Below are the main steps to train a data model with MonkeyLearn: 

• Choose a Model Type
• Select a type of classification
• Import sample data from a file
• Build the model
• Test the model
• Copy the model Id and use it in your code 

const MonkeyLearn = require('monkeylearn')
const ml = new MonkeyLearn(process.env.MONKEYLEARN_APIKEY)
let urgency_model_id = 'cl_Aiu8dfYF'
let categorization_model_id = 'cl_zBbUZ6dU' 
 

Analyze the voicemail message
Now I have the voicemail transcript and my own data model, the next task is to detect
the urgency and categorize the voicemail. But before analyzing the voicemail content, I
do a quick check to see if I have enough information from the voicemail for analyzing it.
I decided to check the word count from the voicemail transcript and set the threshold at
10 words. I also make sure that the voicemail is not a spammy one. 

var wordArr = transcript.split(" ")
if (wordArr.length > 10 && reputation_level == 1){
 analyzeVoicemail(transcript)

}  

To detect the urgency, I call the MonkeyLearn classifiers API, passing the
“urgency_model_id” and the “transcript”, then I parse the API response to extract the
urgency status (“Urgent”, ”NotUrgent”), convert the confidence scale from 1 to 10. 

let data = [transcript]
ml.classifiers.classify(urgency_model_id, data).then(res => {
 var body = res.body[0]
 var result = {}
 if (body.error == false){
 var classification = body.classifications[0]
 result['status'] = classification.tag_name
 var scaled = (classification.confidence * 10)

� Page � of �25 63

 if (classification.tag_name == "Urgent"){
 result['confidence'] = Math.ceil((scaled / 2) + 5)
 }else{
 result['confidence'] = Math.ceil(scaled / 2)
 }
 }else{
 console.log("Error: " + JSON.stringify(body))
 }
})  

To categorize the voicemail, I call the MonkeyLearn classifiers API, passing the
“categorization_model_id” and the “transcript”, then I parse the API response to read the
categories. There could be multiple categories, and each category is associated with a
confidence score. I iterate through the “classifications” array and pick the category with
the highest confidence score. 

let data = [transcript]
ml.classifiers.classify(categorization_model_id, data).then(res
=> {
 var body = res.body[0]
 var result = null
 if (body.error == false){
 var confidence_score = 0
 for (var item of body.classifications){
 if (item.confidence > confidence_score){
 result = {
 category: item.tag_name,
 confidence: item.confidence
 }
 confidence_score = item.confidence
 }
 }
 }else{
 console.log("Error: " + JSON.stringify(body))
 }
})

� Page � of �26 63

 
See the content_analysis.js module for complete code. 
 

Assign support ticket to a designated support
engineer
Suppose there are several support engineers (agents) in a developer support team, I
assign their duty based on their technical skills that match the categories I defined
above (the assignment can be done from the settings page of this demo app).

var agentName = "Unassigned"
for (agent of settings.assigned_agents){
 for (var cat of agent.category){
 if (cat == result.category){
 var table = "voicemail_" + agent.id
 agentName = agent.name
 item['assigned'] = agent.name
 addSupportCaseToAgentDB(table, item)
 if (item.status == "Urgent" && item.confidence > 6){
 var text = "You have an urgent callback request from "
 text += item['fromNumber'] + "\n"
 text += (item['transcript'].length < 150) ?

� Page � of �27 63

 item['transcript'] :
 item['transcript'].substr(0, 150)
 notifyAgentBySmsMessage(thisUser, agent.id, text)
 }else{
 console.log("Not urgent. No need to alert an agent")
 }
 break;
 }
 }
}

 
In the code block above, I iterate through the “assigned_agents” list, compare the
voicemail category with each of the agent’s assigned category. If there is a match, I
assign a support ticket to that agent then add the ticket information to a database. I also
send an SMS to notify the agent if the voicemail is detected as urgent. 
 

Auto reply SMS message to a customer
To enhance the customers experience, we can instantly send a reply SMS message to
notify the callers that we are working on their questions and will call them back as soon
as we can. Of course, we are not going to reply to scammers nor try to send an SMS
message if the caller’s phone number is not a mobile phone number. 

To send a reply SMS message, all I need is to make sure that the caller’s phone number
is a mobile phone number, then compose a relevant message and send an SMS
message using RingCentral SMS API. 

var text = "Hi, thank you for your voice message! We will get
back to you as soon as possible. For your reference, here is
your case number 1234567890"
var params = {
 from: { 'phoneNumber': ourServicePhoneNumber },
 to: [{ 'phoneNumber': item['fromNumber'] }],
 text: text
 }
platform.post('/account/~/extension/~/sms', params)
 .then(function (response) {

� Page � of �28 63

 console.log("sent SMS")
 })
 .catch(function(e){
 console.log(e.message)
 })
 

 
That’s it for the demo for now — you should be able to get started building your virtual
voicemail assistant the way you want and feel free to further develop this app to make it
useful for your business.

� Page � of �29 63

Building Machine Learning Models with
MonkeyLearn 

 
Paco Vu

 
Communication is an integral part of businesses, not only internally, but also externally,
in how they communicate with the customers and partners. Consequently, it’s essential
to work with a communication system in place to achieve this successfully. Having the
correct communication system will consequently create effective communication
between employees, clients, and stakeholders, improving customer service and as a
result, customer engagement. 

However, with time and growth of the business comes new challenges. Customer
queries start piling up and even having a successful communication system sometimes
is not enough to manage the new flood of enquiries. Not only support teams need to
handle this growth while delivering a quality service, but customers are becoming more
and more demanding, and want answers right away. To illustrate, 80% of business
buyers said they expect companies to respond to and interact with them in real-time. 

But don’t panic, artificial intelligence, most specifically machine learning is here to help.
By using this technology, you’re going to be able to automate certain processes so that

� Page � of �30 63

https://www.salesforce.com/research/customer-expectations/
https://www.salesforce.com/research/customer-expectations/

your customer service team can do more. 

For example, you can use machine learning to build an effective virtual voicemail
assistant for your telephone customer services. You can train a model to detect spammy
voicemails, auto-reply to a caller with an SMS message, and even detect urgency of a
voicemail, saving your customer service team countless of hours and making them
more efficient. 

After reading this article, you’ll not only learn about what machine learning can do for
your business, you’ll also be able to build a machine learning model
using MonkeyLearn. Go ahead and keep reading to learn how to do it — below are the
sections if you want to go to something specific: 

• Getting started with MonkeyLearn
• How to build an accurate model?
• How accurate a model can be?
• What algorithms are used for training models?
• Use cases and applications
• How MonkeyLearn handle data security?

 

Let’s get started! 

Getting Started with MonkeyLearn
MonkeyLearn is a platform that makes text analysis with machine learning easy and
accessible for everyone, not only for data scientists. It’s built to analyze huge amounts
of data automatically and efficiently, saving businesses time and resources to do it
manually. 

With MonkeyLearn, you can use two types of models to analyze your data
automatically: classifiers and extractors. On the one hand, Text classifiers are used to
group data into a defined tag or category (by sentiment, topic, urgency, etc.). On the
other hand, text extractors are used to identify and retrieve pieces of information
present in text (for example keywords, entities, prices, dates, etc). By combining
classifiers and extractors companies can automate processes, get insights from data,
and save time processing data.

� Page � of �31 63

https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://monkeylearn.com/
https://monkeylearn.com/
https://monkeylearn.com/text-classifiers/
https://monkeylearn.com/text-extractors/

 
To illustrate how businesses are making use of MonkeyLearn, here are some of the
most popular use cases: 

• Customer service: automatically tag your support tickets based on topic, issue,
sentiment, or intent. By doing this, you can automatically route the ticket to the
right person, prioritize what to answer first, and improve reporting. 

• Customer feedback: automatically tag feedback based on topic, aspect, intent
or sentiment. This will allow you to analyze huge amounts of feedback, get key
insights from data, and improve decision making. 

Now you know what Machine Learning can do, but how does it work? 

Machine learning algorithms learn by experience, so in order to perform a certain task,
they need to be trained how to do it with data. For example, if you want a machine

� Page � of �32 63

https://monkeylearn.com/for-support/
https://monkeylearn.com/for-product/

learning model to detect spammy voicemails, you’ll need to give examples of both
‘regular’ and ‘spammy’ voicemails to the machine. Once it has seen a certain amount of
examples, the model will be able to effectively discern spam content from the regular

content and begin making predictions on new voicemails. 

How to Build an Accurate Machine Learning Model
If you want to create a custom model in MonkeyLearn, you’ll have to train it to be able to
perform its predictions. Here are some of the best practices to follow in order to train an

accurate custom model: 

1. The more data you use for training a model, the smarter the
model will be
The amount of data you’ll need to create an accurate model depends on each particular
case. But as a general rule, the more training samples, the better. Machine learning
algorithms learn from the data you feed, so naturally, the more information you give to
the model, the smarter it will be. 

For instance, to obtain accurate results in topic detection you’ll need about 250
examples per category or tag, whereas in sentiment analysis you’ll need around 500
examples per tag (e.g. positive, neutral, and negative). 

In the case you want to create a model that detects spammy voicemail or a model that
detects the urgency of it you’ll need about 100 to 300 examples per tag to start seeing

good results. 

2. Quality of the data is more important than volume
Even though the quantity of the data is relevant, keep in mind that, in this case,
the quality is even more important. It’s preferable to feed the algorithm with less, but
high-quality training samples, than feeding the model with thousands of examples that
have no valuable information for the model. 

For example, if you’re creating a model to detect the urgency of voicemails, you should
feed the machine with the different ways to express urgency by customers. If you only
manage to train the model with examples that just mention things like ‘ASAP’ or ‘Please
Help Me Now’, the model may miss other situations that you’ll also consider urgent (for

� Page � of �33 63

https://app.monkeylearn.com/main/module-create/wizard/choose-module-type/
https://monkeylearn.com/topic-analysis/
https://monkeylearn.com/sentiment-analysis/

example, a customer gently asking for a refund or reporting a bug). 

3. Define tags that can be used consistently
Tags should always have a unique and specific definition. Define each tag with clear
guidelines and make sure there are no overlapping concepts between two of them.
Tagging your data inconsistently for training your model causes confusion and

significantly affect the accuracy of predictions. 

4. Keep tags to a minimum. Remove tags that are too small or too
niche
Aim to stick to a maximum of 10–15 tags per model. Having more tags than that will not
only make the tagging more inconsistent over time, but also it will be more time-
consuming to tag data for training the model. 

As an example, if you’re categorizing voicemails based on the topic their content, don’t
create niche tags like “mobile performance”, “app speed”, or “desktop loading times”
that only apply for a small amount of voicemails. Instead create a single broader tag like
“performance” that can group these kinds of voicemails. With niche tags, the machine
won’t be able to learn correctly, as there wouldn’t be enough examples or information to

learn from. 

5. Use a single classification criterion per model
Create one classifier per challenge you want to solve. If you are tagging voicemails
based on different criteria, just separate them into two different custom fields. 

For example, if you want to tag voicemails based on their sentiment (positive, negative,
or neutral) and on their urgency (urgent, not urgent), make two different models for each
task. Combining both tasks into a single model will confuse the model and affect its

prediction capabilities. 

6. It’s an iterative process
Creating a reliable and accurate machine learning model is an iterative process. You
start with a small model that only ‘understands’ particular type of voicemails. Then, you
add more examples to improve certain predictions. Afterward, you detect certain edge
cases that the model makes mistakes and you work with the existing training data to
improve these predictions. Next, you adjust the parameters and start fine-tuning the
model for specific situations. And so on. 

� Page � of �34 63

Keep in mind that a machine learning model can always be improved. You should
continuously keep feeding the model with more and better examples to get the best
results. If you just stick to the data you initially fed the machine, the learning process will
end there and the model will not become more accurate or even learn from a new type
of voicemail that you might receive over time.

How Accurate a Model Can Be?
If you follow these best practices, you’re probably wondering exactly how accurate the
model can become. Well… there is no simple answer to this question. It depends on
each particular case, however, provided the dataset is clean, criteria is well-defined and
the tagging of the data is consistent, you might get to F1 scores over 90%. The F1
score is the statistical accuracy of the model, so naturally the higher the F1 score, the
better. 

The accuracy of the model will also depend on which algorithm was used to create the
model. In the following section, we’ll go through the different options you’ll have.

� Page � of �35 63

http://help.monkeylearn.com/en/articles/2173838-understanding-classifier-statistics
http://help.monkeylearn.com/en/articles/2173838-understanding-classifier-statistics

What Algorithms Are Used for Training the Models?
When creating a custom model in MonkeyLearn you’ll be able to choose which
algorithm to use to train the model. There is no right or wrong way to go here, each
algorithm works better in different situations. Depending on whether you’re creating a
classifier or extraction model, your options will be the following. 

For custom classifiers, you can choose between training your model with Naive Bayes
or Support Vector Machines (SVM) algorithms. 

Naive Bayes is a simple, fast, accurate, and reliable solution, that works especially well
with natural language processing problems. Naive Bayes takes advantage of Bayes’
Theorem and probability theory to predict the tag of a text. It is a family of probabilistic
algorithms that for a given text (input) calculates the probability of each tag (output), and
decides the outcome based on the highest probability. 

Support Vector Machines is an algorithm that works particularly well with a limited
number of data, being faster, and having better performance than other algorithms. We
recommend using this algorithm when the data is linearly separable so you can quickly
classify data. 

For custom extractors, you can only use the default algorithm which is Conditional
Random Fields (CRF), an algorithm with a statistical approach that contemplates the
context and relationship to make predictions. This algorithm can create really complex
patterns between words and data than a REGEX and has the ability to generalize from
a small amount of information. 

� Page � of �36 63

http://help.monkeylearn.com/en/articles/2173823-how-to-build-a-custom-classifier
https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
http://help.monkeylearn.com/en/articles/2174073-how-to-build-a-custom-extractor
https://monkeylearn.com/keyword-extraction/#conditional-random-fields
https://monkeylearn.com/keyword-extraction/#conditional-random-fields

Use Cases & Applications
By now, you have learned how to train a model and picked up some best practices on
what to do to get accurate predictions. But how can all of this be useful for your
business? 

Machine learning can help get you to get key insights from your data and automate all
kinds of processes. For example, you can use machine learning to create a smart
voicemail assistant that can do some of your work for you, such as: 

• Automatically tag new voicemails based on topic, issue, sentiment, or intent.
• Routing the voicemails to the right team member.
• Detect the urgency of a voicemail, so you’ll be able to prioritize, answering the

most urgent ones first.
• Analyze your voicemail to discover insights on what people are talking about,

which can be used as a resource for decision making.
• Create AI-based auto-responses and response suggestions for voicemails to

save time when giving an answer.

How MonkeyLearn Handles Data Security?
At MonkeyLearn, we are aware that businesses are not only trusting us to add value to
their data but also to keep it secure. We take extreme measures to maintain that
security, including: 

• Physical security: Our services are hosted in Microsoft Azure which keep state-
of-the art physical security, including 24x7x365 surveillance, environmental
protections, and extensive secure access policies. 

• System security: our servers run in recent Linux OS releases with long term
support policies and are regularly updated. Our web servers communicate over
HTTPS (TLS 1.2) to protect requests from eavesdrop and man-in-the-middle
attacks. We use 2048 bit RSA SSL certificates, signed with SHA256. 
Our engineering team monitors and logs errors using top-notch tools
like Datadog and Sentry. We also have strict privacy policies and a testing
infrastructure to ensure data privacy within our applications. Moreover, we run
and securely store daily data backups. 

• Operational security: The development and maintenance of our platform is run
by our highly trained engineering team. User data can only be accessed by a
small number of authorized employees. Accessing user’s accounts by
MonkeyLearn employees is only allowed in exceptional cases, always with your

� Page � of �37 63

https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://medium.com/ringcentral-developers/build-your-ringcentral-virtual-voicemail-assistant-for-business-part-2-4971a4353183
https://www.datadoghq.com/
https://sentry.io/monkeylearn/

prior permission and for the purpose of resolving a specific issue only. 

Wrap-up
Companies grow and evolve over time. As soon as the number of customer queries
start to scale, and the expectations start to arise, you’ll need to provide your customer
service team with the right tools to stay on top of their workloads. 

That’s where machine learning can play a crucial role. By automating processes that
are time-consuming, customer service teams can focus on the important things. Instead
of wasting time routing voicemails or support tickets to the right team or monitoring
incoming customer queries to detect urgent issues, agents can work on what’s more
important; solving issues and delighting customers.

� Page � of �38 63

Voice Communications Analytics 
 
Paco Vu

Wouldn’t it be useful to make communication content, in the form of audio, searchable
for what is said in it, analyze it and extract actionable insights which help us quickly
understand and easily navigate to critical moments within a conversation? 

In this article, I will walk through the necessary steps to build a Web app that can
analyze call recordings and voicemail content to extract text and actionable insights. It’s
about automating the process of deriving meaning from vast quantities of content, which
would be impossible with purely human involvement — but possible by using artificial
intelligence and applied machine learning technology available on the market like IBM
Watson, Google Cloud Platform or Haven OnDemand platform. Once we’re finished
we’ll have an app which will: 

• Transcribe speech-to-text from call recordings and voicemail messages.
• Classify call content into predefined set of classification categories.
• Index call content with extracted metadata to enable advanced search.
• Allow users to search for any spoken word or phrases from call recordings and

voicemail messages.
• Allow users to fetch call recordings and voicemail by a caller’s number, a callee’s

number or by an extension number.
• Allow users to list call recordings and voicemail under the same categories.
• Allow users to search for call recording and voicemail with sentiment as positive,

negative or neutral.
• Play back a call recording or a voicemail with stylish text synchronization.
• Allow users to interact with a call recording or a voicemail from the transcript by

clicking on any word from the text to fast-forward or rewind to the selected word.
• Highlight positive and negative human opinions in the speech.
• Extract meaningful entities from a call recording or from a voicemail and allow

users to see summaries of famous people, famous places and famous
companies mentioned in the transcript. And easily navigate to related information
from Wikipedia.

• Allow users easily reply to a voicemail message by click-to-dial.
 
This demo application is built using Node JS, Express Web application framework.
Thus, for conveniences, I will use the Node JS SDKs provided by RingCentral, IBM
Watson, Google Cloud Platform and Haven Ondemand Platform to access their
services. You can easily build this Web app backend in any programming language you
like with the client libraries provided by the services providers mentioned above. 

� Page � of �39 63

https://github.com/ringcentral/ringcentral-js
https://github.com/watson-developer-cloud/node-sdk
https://github.com/watson-developer-cloud/node-sdk
https://cloud.google.com/nodejs/
https://github.com/HPE-Haven-OnDemand/havenondemand-node

Project’s source code
Code snippets in this blog are just for illustration purpose. They are shortened and
incomplete. In order to follow the course of the application development, you may want
to download the entire project source code from our GitHub repository. 

If you want to build your own app using the source code, remember to use your own
service access credentials to access RingCentral platform, IBM Watson, Google Cloud
Platform and Haven OnDemand platform and replace them from the .env configuration
file.  

Prepare for the content
Before you start, make sure that you have some call recordings and voicemail content
with good quality of speech. If you don’t have real content, which is the best data to play
with, you can make a few phone calls to RingCentral phone numbers under your
RingCentral account, pick up the call and start to record the conversation. You should
also make a few calls and just leave a voice message instead of picking up the call. By-
the-way, if you are not a RingCentral customer, you can sign up for a free developer
account and download the RingCentral soft-phone app for generating contents. 

Now let’s have a look at the RingCentral account’s call log database, read call recording
and voicemail logs, then collect a few essential call’s metadata to create our own
dataset. In this demo, I am interested at the date and time when the call was made, the
duration of the call, the phone number or name of the caller, the phone number or name
of the callee, and the most important piece of data is the URI of the binary content.
Because I am interested at both call recordings and voicemail, I also want to specify the
type of the content as ‘CR’ for call recording and ‘VM’ for voicemail.

To make it possible also for a supervisor to analyze company-wide voice
communication, I allow a user with the admin role to access the company call log. This
means that the supervisor can read call recordings and voicemail of any extension (any
user) under the same account. That is why I want to add the extension number
(extNum) and the full name (fullName) of any user to the dataset. Finally, I save the
dataset into a local database (in this project I use SQLite). 

� Page � of �40 63

https://github.com/ringcentral-tutorials/voice-communication-analytics-nodejs-demo
https://developer.ringcentral.com/
https://console.bluemix.net/registration/?target=%2Fdeveloper%2Fwatson%2Fdocumentation
https://cloud.google.com/products/
https://cloud.google.com/products/
https://www.havenondemand.com/
https://developer.ringcentral.com/free-tier-sign-up.html
https://developer.ringcentral.com/free-tier-sign-up.html
https://www.ringcentral.com/office/features/desktop-apps/overview.html

Up to this point, we have some structured data with the metadata retrieved from
RingCentral call log database. After saving the dataset to our SQLite database, we can
search for calls made on a certain date, or calls from the same caller’s number etc. 

The most valuable information of a voice communication is still hidden in the audio
binary content, which is the dialogue of a call recording or the monologue of a
voicemail. The data in the wave form is human data — an unstructured data which
could be understood only when we’re listening to it. Now, without listening to every
single call recording or voicemail, a time-consuming task which would take us hours or
days to complete — how can we find out what was said in the conversation? How can
we identify calls with happy or unhappy conversation? How do we know if our
customers left a message complaining about our product or asking us to call them
back?  

Extract text from speech communication content
The mystery in a wave-form content could be uncovered by using some level of artificial
intelligence. And the first necessary step to tackle is to transcribe the speech using
Speech-to-Text technology. This sounds complicated and requires a lot of engineering
works, right? Fortunately, speech recognition technology is matured and can be easily
accessed via on-demand service from many different leading service providers such as
IBM Watson, Google Cloud Platform, AWS etc.
There are pros and cons for considerations while choosing a speech recognition service
from a wide range of providers on the market. For instance, in this demo, I chose
Watson Speech-to-Text instead of Google Cloud Speech-to-Text just because Watson
gives the transcript with the timestamp of each spoken word — which can be used to
enable the feature of playing back a call recording or a voicemail with stylish text
synchronization and letting users interact with the binary content. Otherwise, it would be
great to use Google Cloud Speech-to-Text for its great features of providing transcript
with punctuations, auto-detect language, which are quite critical for data analytics
(please note that at the time this blog is written, I don’t see Google Cloud speech-to-text
API supports timestamp extraction but it may support that in the future). 

To use Watson Speech-to-Text API, we specify the query parameters for our expecting
result as follows: 
 
 

� Page � of �41 63

var prams = {
 model: 'en-US_NarrowbandModel',
 audio: bufferStream,
 content_type: 'audio/mp3',
 timestamps: true,
 interim_results: false,
 profanity_filter: false,
 smart_formatting: true,
 speaker_labels: true
};
 
Where, bufferStream is the audio data stream read from the binary content URI from
RingCentral call log. Then we call the API as shown below: 

var watson = require('watson-developer-cloud');
var speechToText = new watson.SpeechToTextV1({
 username: process.env.WATSON_USERNAME,
 password: process.env.WATSON_PWD,
 url: 'https://stream.watsonplatform.net/speech-to-text/api/'
});
speechToText.recognize(params, function(err, res) {
 if (err)
 console.log(err);
 else
 console.logJSON.stringify(res))
}  

Upon receiving the response from Watson Speech-to-Text API, we parse the result and
iterate thru the alternatives array to create an array to keep all the spoken words and
the start_time timestamp of each word. 

� Page � of �42 63

 
Because we specified the speaker_labels parameter, Watson Speech-to-Text API
result will contain an array of speaker labels. To create a conversation flow identified by
the returned speaker labels from the response, we need to match a speaker label with
the transcript. This is not straightforward as there is no word associated with a speaker
label. Instead, we have to match the start_time timestamps from
the speaker_labels array with the start_time timestamps from the alternatives arrays
to create a new array containing spoken words of that speaker. 
 

� Page � of �43 63

As Watson Speech-to-Text API does not support transcript with punctuations, we will
need some mechanism to break a large chunk of text into sentences or paragraphs. In
this demo project, for voicemail transcript, I simply rely on the transcript sentence of
each alternatives in the results array. And for call recording transcript, I detect when a
speaker id is changed to define a sentence. This approach is good enough as long as
the speech is fluent and punctuated. For real application, I recommend you use some
3rd party service or better algorithm to create accurate punctuations for the transcript.
Or perhaps, drop the stylish text synchronization feature and use Google Cloud
Speech-to-Text service, which supports punctuations. 

We’ve solved the first problem, a vital important step to transform audio content into text
content which is required for data analytics. We also generated some new metadata
such as the timestamp of every spoken word and the speaker labels. Our dataset is
getting richer now with a few more useful data fields. In fact, we can save the dataset to
our database and be able to search for any spoken word or phrase from the “audio”
content. We can also implement a user interface to display the conversation separated
by different speakers and display stylish text synchronized while playing back the audio
content. I will discuss in more details about how to implement that feature later in this
blog. 

 
The next step is to apply data analytics for extracting actionable insights from the
content and further transform unstructured data into structured data so that we can
operate upon the data. This is a very critical step as you need to ask yourself a question
of what information do you need? The answer will depend on the nature of the content
and your expectation of operating the data. Let’s say you are planning to analyze your
customer’s feedback about your products, you may want to use sentiment analysis to
analyze how your customers think and talk about the product they purchased. What
they like or dislike and what is the level of their opinions. 

In this project, I want to categorize the content, extract keywords from it so that I can
enhance the search engine — allow users to search for content with similar category
and rank the search result. I also want to highlight meaningful entities such as people,
places, companies or phone numbers if they are mentioned in a call recording or a
voicemail message. One of my favorite data analytics features is to use sentiment
analysis to measure human opinions and classify the content based on the polarized
sentiments as positive or negative. 

� Page � of �44 63

IBM Watson includes the Natural Language Understanding API which can be used to
identify actionable insights from a document. The Watson NLU API is capable of
extracting insights such as keywords with confidence score, meaningful entities, key
concepts of the content etc. It can also classify the content into predefined categories.
Alternatively, Google Cloud Natural Language or Haven Ondemand Text
Analysis services could do the same thing. It’s hard to say which platform is better in
terms of quality, performance and price. You can always try them out and choose the
one which works well for your data. In this project, I chose the Watson NLU for
extracting keywords from the content and categorize the content. My choice is not
based on the quality nor the pricing factor, but it is based on the performance in term of
convenience because I can specify several features and make just one API call to get
the result. While with Google Cloud Platform or Haven Ondemand Platform, I must
make separate API calls for different features. 

Let’s call the Watson NLU API to extract keywords from the content and classify the
content with predefined categories to enrich our dataset. 

var params = {
 'text': text,
 'features': {
 'categories': {},
 'keywords': {
 'limit': 100
 }
 }
}
nlu.analyze(params, function(err, response) {
 if (err)
 console.log('error:', err);
 else
 console.log(response)
});
 
The response of a success API call above will contain an array of categories, which
were classified for the provided content, and an array of extracted keywords with
confidence score. 

Alternatively, for categorization, you can use Google Cloud Natural Language API to
classify the content. 

� Page � of �45 63

https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1/
https://cloud.google.com/natural-language/
https://dev.havenondemand.com/apis
https://dev.havenondemand.com/apis

const document = {
 content: text,
 type: 'PLAIN_TEXT',
};
language_client.classifyText({document: document})
 .then(results => {
 console.log(JSON.Stringify(classification.categories))
 })
 .catch(err => {
 console.error('ERROR:', err);
 });
 
Remember that when classifying your content using Watson NLU or using Google
Cloud Natural Language, your content will be classified based on their predefined set of
categorizations. Thus, the results from each will be different! 

Let’s move on to analyze sentiments of the content. Both Watson NLU and Google
Cloud Platform support sentiment analysis API. However, they are different and both
give too simple result. For Watson sentiment analysis, you must define a set of target
words (max 20 targets). This is suitable for content that you knew it might contain
subjects that you want to analyze the sentiment. For instance, if the content is about
customer’s feedback of your products and you have a list of products’ names, you can
specify your products’ names in the target array then add the sentiment keyword to the
features list in the query parameter. Let’s have a look at how it analyzes the following
sample sentence: 

var text = "The bananas were fresh and sweet. But the grapes
were rotten and bitter."
var params = {
'text': text,
'features': {
 'sentiment': {'target': ['bananas', 'grapes']}
 }
}
nlu.analyze(parameters, function(err, response) {
 if (err)
 console.log('error:', err);
 else
 console.log(JSON.stringify(response))

� Page � of �46 63

});
 
If sentiment is found relating to the specified targets, the result will be an array of targets
with each object containing the sentiment information in the example response below: 

{
 ...
 "sentiment": {
 "targets": [
 {
 "text":"bananas",
 "score":0.740724,
 "label":"positive"
 },{
 "text":"grapes",
 "score":-0.616188,
 "label":"negative"
 }],
 "document":
 {
 "score":0.0875428,
 "label":"positive"
 }
 },
 ...
}  

If you want to use Google Cloud sentiment analysis API, you don’t need to predefine a
list of target words. The API analyzes sentiment of each sentence in the content. This is
one of the reasons why I mentioned earlier that the recognized text should be
accurately punctuated. If sentiment is found in sentences, the result will be an array of
sentences with each object containing the data in the example response below: 

"sentences": [
 {
 "text": {
 "content": "The bananas were fresh and sweet.",
 "beginOffset": -1

� Page � of �47 63

 },
 "sentiment": {
 "magnitude":0.8999999761581421,
 "score":0.8999999761581421
 }
 },{
 "text": {
 "content": "But the grapes were rotten and bitter.",
 "beginOffset": -1
 },
 "sentiment": {
 "magnitude": 0.20000000298023224,
 "score": -0.20000000298023224
 }
 }
]
 
You can compare the pros and cons of each API’s capabilities and result, then decide
which API you want to use. As for me, I need more than just the overall polarized
sentiment of the content and the sentiment score of each predefined target if I use
Watson NLU, or the sentiment score of a sentence if I use Google Cloud Sentiment
Analysis API. That is why I am considering Haven On-demand platform because
its Sentiment Analysis API result gives me more useful information. Let’s have a look at
how it analyzes the same sample sentence above: 

var hod = require('havenondemand')
var hodClient = new hod.HODClient(process.env.HOD_APIKEY, "v2")
var request = {'text' : text}
hodClient.get('analyzesentiment', request, false,
 function(err, resp, body) {
 if (!err) {
 console.log(resp)
 }
})
// RESPONSE
{
 "sentiment_analysis": [
 {

� Page � of �48 63

https://dev.havenondemand.com/apis/analyzesentiment#overview

 "positive": [
 {
 "sentiment": "fresh and sweet",
 "topic": "The bananas",
 "score": 0.9203650635837769,
 "original_text": "The bananas were fresh and sweet",
 "original_length": 32,
 "normalized_text": "The bananas were fresh and sweet",
 "normalized_length": 32,
 "offset": 0
 }
],
 "negative": [
 {
 "sentiment": "rotten and bitter",
 "topic": "the grapes",
 "score": -0.8532963042204732,
 "original_text":"But the grapes were rotten and bitter",
 "original_length": 37,
 "normalized_text":"But the grapes were rotten and
bitter",
 "normalized_length": 37,
 "offset": 34
 }
],
 "aggregate": {
 "sentiment": "slightly positive",
 "score": 0.03353437968165185
 }
 }
]
}
 
As you can see, this API gives me much more insights. Besides the polarized scores, I
can capture the topic and the sentiment in a sentence represented by the original text.
Thus, I would easily find out more how people talks about a topic. 

� Page � of �49 63

Let’s consider what information we want to include in our dataset and how do we use
them later. First, I want to add the aggregate sentiment label and the score to the
dataset. With the sentiment label in the database, I can search for content with positive,
negative or neutral sentiment. And with the sentiment score, I can set the threshold to
limit search results or to rank the result based on the high or the low score. Second, I
want to find out the highest positive sentiment score and the lowest negative sentiment
score, compare them with predefined thresholds (one for positive and one for negative),
add them to the dataset so that I can read and display alerts if there is any statement
with very positive sentiment or some statement with very negative sentiment in the
content. Finally, I want to add the positive and the negative sentiment objects which
contain the sentiment, the topic, the score and the original text. With these detailed
information, I can highlight positive and negative statements when displaying the text
content.

Let’s further extract meaningful entities from the content. All Watson NLU, Google Cloud
Natural Language and Haven Ondemand Text Analysis support entities extraction
feature. Like our previous consideration of choosing Sentiment Analysis API from
different platforms, we should consider which one is more suitable for our use case. I
will let you run your own tests with your real content and make your own judgement. For
now, I choose Haven On-demand Entity Extraction API over the others because of its
wide-range of entity types and providing reference to Wikipedia information source. 

var entityType =
['people_eng','places_eng','companies_eng','number_phone_us']
var request = {
 'text': transcript,
 'entity_type': entityType,
 'show_alternatives': false
}
hodClient.get('extractentities', request, false,
 function(err, response, body) {
 if (!err) {
 console.log(response)
 }

� Page � of �50 63

https://dev.havenondemand.com/apis/extractentities#overview

})  

From the code snippet above, I specify the entity type to extract famous people, places,
companies and U.S formatted phone numbers, then call the API to extract those entities
from the transcript. On success, I will add the response containing a list of identified
entities to my dataset. The detailed information from an entity differs from each type of
entity. For example, a person entity object contains a quick profile of that person such
as the name of that person, a list of professions, the date of birth, the image and the link
to a person’s Wikipedia page. And a place entity object contains essential information of
that place such as the name of the location, the longitude and latitude, the type of the
place (e.g. city or country) etcetera. You can learn more about entities information
from here. 

Create actionable items
This demo project is about analyzing voice communication content, which includes
voicemail messages. Some voicemail could contain a message just “for your
information”, some voicemail could contain critical requests for taking actions. For
example a voicemail might contain a “call back request”. Let’s implement a simple
technique to detect a call back request and make it easier for a user to reply such a
voicemail. 

var callActionDictionary = ['my number is', 'my cell phone is',
'my cell number is', 'my phone number is', 'call me', 'call me
back', 'give me a call', 'reach me at']
var callHighlight = transcript
for (var term of callActionDictionary){
 var regExp = new RegExp("\\b" + term + "\\b", "ig");
 if (callHighlight.match(regExp) != null){
 var text = ''
 text += term + ""
 callHighlight = callHighlight.replace(regExp, text)
 }
}
for (var number of phoneNumbers){
 var regExp = new RegExp("\\b" + number + "\\b", "ig")
 if (callHighlight.match(regExp) != null){
 var call =''
 call += number + ''
 callHighlight = callHighlight.replace(regExp, call)

� Page � of �51 63

https://dev.havenondemand.com/apis/extractentities#response

 }
}  

First, I define a simple dictionary of call back request phrases. Then I detect if those
phrases are found from the voicemail transcript. If a phrase is found, I highlight it by
wrapping a CSS class call_highlight around the phrase. Then finally, I go through the list
of phone numbers returned from the Entity Extraction API, and enable the click-to-dial
on that number. The reason I implement the click-to-dial manually, is because I want to
display the callHighlight text dynamically (using jQuery to show or hide) and force the
browser to launch the RingCentral soft-phone to make a phone call. One extra thing to
consider is that what if there is a call back request but there is no phone number
detected? In that case, maybe we can presume that the caller expected a call back on
the same number he/she was calling from. So in that case, we can use the “from
number” extracted from the call metadata discussed earlier. 

It’s time to finalize our dataset with the rest of content metadata.

 
We are done with building the structured dataset and the process of metadata
generation. Below is some code to create a SQLite database and a user table with
defined columns. We use the unique extensionId of a user as the name of a user table. 

function createUserTable(extensionId) {
 let db = new sqlite3.Database(USERS_DATABASE)
 var query = 'CREATE TABLE '+ extensionId +' (id DOUBLE PRIMARY
KEY, rec_id VARCHAR(16) NOT NULL, date INT(11) NOT NULL, type
VARCHAR(12) NOT NULL, extensionNum VARCHAR(6) NOT NULL, fullName
VARCHAR(32) NOT NULL, fromRecipient VARCHAR(12) NOT NULL,
toRecipient VARCHAR(12) NOT NULL, recordingUrl VARCHAR(256) NOT
NULL, duration INT DEFAULT 0, processed BOOLEAN NOT NULL,
wordswithoffsets TEXT NOT NULL, transcript TEXT NOT NULL,
conversations TEXT NOT NULL, sentiment TEXT NOT NULL,
sentiment_label VARCHAR(8) NOT NULL, sentiment_score DOUBLE NOT
NULL, sentiment_score_hi DOUBLE NOT NULL, sentiment_score_low

� Page � of �52 63

https://www.ringcentral.com/office/features/desktop-apps/overview.html

DOUBLE NOT NULL, actions TEXT NOT NULL, keywords TEXT NOT NULL,
entities TEXT NOT NULL, categories TEXT NOT NULL)'
 db.run(query, function(err, result) {
 if (err){
 console.error(err.message);
 }else{
 console.log("table created"))
 }
 });
}  

Now let’s learn how to read RingCentral call log database. I will skip the login to
RingCentral account and get authenticated steps. But if you are interested, please
read this tutorial or self-study the login part from the code of this project.
RingCentral call log can be accessed programmatically using the call-log API. An
account user with the admin role, can read the call log of any extension under the
account. Any user with the standard user role can only read his own call log. This why
after a user logs in his RingCentral account, I read the user information and detect his
role to decide if he can read all extensions’ call log or just his own extension call log. 

platform.get('/account/~/extension/~/')
 .then(function(response) {
 var jsonObj = response.json();
 if (jsonObj.permissions.admin.enabled){
 engine.getAccountExtensions(userIndex)
 }else{
 var item = {}
 var extensionList = []
 item['id'] = jsonObj.id
 item['extNum'] = jsonObj.extensionNumber.toString()
 item['fullName'] = jsonObj.contact.firstName + " "
 item['fullName'] += jsonObj.contact.lastName
 extensionList.push(item)
 ...
 } 

To read calls’ information from the call log, I let a user choose a time range when calls
were made. Then I iterate through the extension list to read the call log of each

� Page � of �53 63

https://ringcentral-tutorials.github.io/oauth-nodejs-demo/?distinctId=165434c28cb24d-03d3b25eee5a8c-34647909-fa000-165434c28ce5b7

extension and detect if there is a voicemail message or a call recording in that call,
parse and extract metadata then add them to the database. 

var endpoint = '/account/~/extension/'+ ext.id +'/call-log'
var params = {
 view: "Detailed",
 dateFrom: req.body.dateFrom,
 dateTo: req.body.dateTo,
 showBlocked: true,
 type: "Voice",
 perPage: 1000
}
platform.get(endpoint, params)
 .then(function(resp){
 var json = resp.json()
 if (json.records.length == 0){
 console.log("EMPTY")
 }else {
 let db = new sqlite3.Database(USERS_DATABASE);
 async.each(json.records,
 function(record, callback0){
 var item = {}
 if (record.hasOwnProperty("message") &&
 record.message.type == "VoiceMail"){
 // extract voice mail metadata
 }else if (record.hasOwnProperty("recording")){
 // extract call recording metadata
 }else {
 // call does not have CR nor Voicemail message
 return
 }
 var query = "INSERT into "+extId +" VALUES ("...")";
 db.run(query, function(err, result) {
 if (err){
 console.error(err.message);
 }else{

� Page � of �54 63

 callback0(null, result)
 }
 })
 },
 ... 

At this point, I might have call recordings and voicemails with metadata stored in the
local database so I can read the data to display them on a dashboard as shown in the
picture below:

 
Now I will let the user to manually click the Transcribe button at each item on the list to
start the data analytics for that call recording or voicemail message. Of course you can
automate this step if you want to. This means that after reading the call log, you can
automatically call the function to transcribe the call recording or the voicemail binary
content. 

After the binary content is transcribed and analyzed, I add the new metadata to the
database and update the content list with the transcript, positive or negative sentiment
indicator and sentiment alerts. And I also enable the Open button so that the user can
click to open and see detailed analytics of that call item.

� Page � of �55 63

 
From the search bar on the dashboard, I add several options such as the Field (all,
transcript, keywords, from, to, extension or categories), the Type (call recording or
voicemail) and the Sentiment (all, neutral, positive or negative) dropdown list. And I also
add the positive and negative sliders for users to specify advanced search. For
example, I can select the Transcript field and write the word “account” to the search text
field, then select the type as Voicemail and the Sentiment as Positive. I also set the
positive score slider to 0.600 and click the Search button. This will search from the
database for voicemail messages which contain the word “account” and the message
must have the overall positive sentiment with the sentiment score is greater than 0.600. 

Now let’s have a look at the detailed analysis view. On the details view, I display the
conversations on the left-hand side, and on the right-hand side I display the analytics
information based on what the user chooses from the menu bar. In the screenshot
shown below, you can see the left-hand side is shown the transcript with speaker labels,
and the texts displayed in different colors. Texts in green color were read, and a single
word in yellow color is the current spoken word, then texts in gray color are unread. The
right-hand side is shown with the transcript highlighted with positive and negative
sentiment in green or red color, respectively.

� Page � of �56 63

 

Display stylish text synchronized while playing back
the audio

To implement the stylish text synchronization, first, I add an audio player to the html
page. 

<audio id="audio_player" controls controlsList="nodownload">
 <source src='<%= results['recordingUrl'] %>' type="audio/
mpeg">
 Your browser does not support the audio element.
</audio>
 
Then implement the following JavaScript codes: 

var aPlayer = null
var index = 0
var mIndex = 1
var wwoArr = []
var wordElm = null
function initializeAydioPlayer(){
 wwoArr = JSON.parse(window.results.wordswithoffsets)
 wordElm = document.getElementById("word0");

� Page � of �57 63

 aPlayer = document.getElementById("audio_player");
 aPlayer.addEventListener("timeupdate",seektimeupdate,false);
 aPlayer.addEventListener('loadeddata', audioLoaded, false);
 aPlayer.addEventListener('seeked', seekEnded, false);
}
function audioLoaded() {
 mIndex = 0;
}
function seekEnded() {
 var pos = aPlayer.currentTime;
 resetReadWords(pos);
 var id = "word" + mIndex;
 wordElm = document.getElementById(id);
}
function seektimeupdate() {
 var pos = aPlayer.currentTime;
 if (mIndex < wwoArr.length) {
 var check = wwoArr[mIndex].offset;
 while (pos >= check) {
 wordElm.setAttribute("class", "readtext");
 wordElm = document.getElementById("word"+mIndex);
 wordElm.setAttribute("class", "word");
 mIndex++;
 check = wwoArr[mIndex].offset;
 }
 }
}
function resetReadWords(value) {
 var elm;
 for (var i=0; i<mIndex; i++) {
 var idee = "word" + i;
 elm = document.getElementById(idee);
 elm.setAttribute("class", "unreadtext");
 }
 mIndex = 0;
 var pos = offsetArr[mIndex];

� Page � of �58 63

 while (pos < value) {
 var idee = "word" + mIndex;
 elm = document.getElementById(idee);
 elm.setAttribute("class", "readtext");
 mIndex++;
 pos = offsetArr[mIndex];
 }
}
 

Interact with the audio player and instant search
function

You can search for any spoken word from the transcript by entering a word into the
search text field and click the Search button. If the word is found from the transcript, the
media player will fast forward or rewind instantly to that word and continue to play the
audio content from that moment. You can also click on any word on the transcript to fast
forward or fast rewind to that selected moment. Also from the right-hand side, you can
read the sentiment and click on the Goto link to jump instantly to the beginning of that
sentence in the transcript. To implement this feature, I add the onclick event to every
word then assign the jumpTo() function and passing along the offset timestamp of that
word. Inside the jumpTo() function, I simply set the offset timestamp to the audio
player’s currentTime. To search for a spoken word and fast forward or rewind to that
moment, I pick the word from the search field and find it from the wwoArr (word with
offset array), if the word is found from the array, I read the offset timestamp and call
the jumpTo() function with the timestamp. 

// EJS page
<% for (var n = 0; n < conv[i].sentence.length; n++) { %>
<% var wId = "word" + index %>
<span onclick= "jumpTo(<%= conv [i].timestamp[n] %>)"
class="unread" id="<%= wId %>" ><%= conv[i].sentence[n] %></
span>
<% index += 1 %>
<% } %>
// JavaScript code
function searchForText(){
 var searchWord = $("#search").val()

� Page � of �59 63

 for (var i=mIndex; i<wwoArr.length; i++){
 var word = wwoArr[i].word
 if (word == searchWord){
 var timeStamp = wwoArr[i].offset
 jumpTo(timeStamp)
 break
 }
 }
 if (i >= wwoArr.length){
 for (var i=0; i<wwoArr.length; i++){
 var word = wwoArr[i].word
 if (word == searchWord){
 var timeStamp = wwoArr[i].offset
 jumpTo(timeStamp)
 break
 }
 }
 }
}
function jumpTo(timeStamp) {
 var value = timeStamp;
 aPlayer.pause();
 resetReadWords(timeStamp);
 var id = "word" + mIndex;
 wordElm = document.getElementById(id);
 aPlayer.currentTime = timeStamp;
 aPlayer.play();
}
 

Displaying analytics results

From the menu bar on the right-hand side, you can choose to display sentiment
analysis, meaningful entities, or transcript with keywords highlighted, or actionable item
(click to dial in this demo) or just the plain text content. 

� Page � of �60 63

You can change the positive and negative thresholds from the sliders to adjust the
sentiment score for displaying sentiment analysis.
All the features above are implemented on the front-end using JavaScript to process the
transcript and the metadata extracted from the audio content. 

Congratulations! Now you should be able to build and further develop the this project
with more features if you want to. For example, you may want to extract the concepts of
the content using concepts extraction service. Or you want to implement an advanced
feature for finding similar content based on the set of keywords found from each
content. 

Node.js / JavaScript: https://github.com/ringcentral-tutorials/voice-communication-
analytics-nodejs-demo

� Page � of �61 63

https://github.com/ringcentral-tutorials/calllog-visualization-nodejs-demo
https://github.com/ringcentral-tutorials/calllog-visualization-nodejs-demo
https://github.com/ringcentral-tutorials/calllog-visualization-nodejs-demo

 
 

Learn more about RingCentral and earn great  
prizes and rewards in the process!  

https://gamechanging.dev

� Page � of �62 63

� Page � of �63 63

